관리-도구
편집 파일: niederreiter_base2.hpp
/* boost random/nierderreiter_base2.hpp header file * * Copyright Justinas Vygintas Daugmaudis 2010-2018 * Distributed under the Boost Software License, Version 1.0. (See * accompanying file LICENSE_1_0.txt or copy at * http://www.boost.org/LICENSE_1_0.txt) */ #ifndef BOOST_RANDOM_NIEDERREITER_BASE2_HPP #define BOOST_RANDOM_NIEDERREITER_BASE2_HPP #include <boost/random/detail/niederreiter_base2_table.hpp> #include <boost/random/detail/gray_coded_qrng.hpp> #include <boost/dynamic_bitset.hpp> namespace boost { namespace random { /** @cond */ namespace qrng_detail { namespace nb2 { // Return the base 2 logarithm for a given bitset v template <typename DynamicBitset> inline typename DynamicBitset::size_type bitset_log2(const DynamicBitset& v) { if (v.none()) boost::throw_exception( std::invalid_argument("bitset_log2") ); typename DynamicBitset::size_type hibit = v.size() - 1; while (!v.test(hibit)) --hibit; return hibit; } // Multiply polynomials over Z_2. template <typename PolynomialT, typename DynamicBitset> inline void modulo2_multiply(PolynomialT P, DynamicBitset& v, DynamicBitset& pt) { pt.reset(); // pt == 0 for (; P; P >>= 1, v <<= 1) if (P & 1) pt ^= v; pt.swap(v); } // Calculate the values of the constants V(J,R) as // described in BFN section 3.3. // // pb = polynomial defined in section 2.3 of BFN. template <typename DynamicBitset> inline void calculate_v(const DynamicBitset& pb, typename DynamicBitset::size_type kj, typename DynamicBitset::size_type pb_degree, DynamicBitset& v) { typedef typename DynamicBitset::size_type size_type; // Now choose values of V in accordance with // the conditions in section 3.3. size_type r = 0; for ( ; r != kj; ++r) v.reset(r); // Quoting from BFN: "Our program currently sets each K_q // equal to eq. This has the effect of setting all unrestricted // values of v to 1." for ( ; r < pb_degree; ++r) v.set(r); // Calculate the remaining V's using the recursion of section 2.3, // remembering that the B's have the opposite sign. for ( ; r != v.size(); ++r) { bool term = false; for (typename DynamicBitset::size_type k = 0; k < pb_degree; ++k) { term ^= pb.test(k) & v[r + k - pb_degree]; } v[r] = term; } } } // namespace nb2 template<typename UIntType, unsigned w, typename Nb2Table> struct niederreiter_base2_lattice { typedef UIntType value_type; BOOST_STATIC_ASSERT(w > 0u); BOOST_STATIC_CONSTANT(unsigned, bit_count = w); private: typedef std::vector<value_type> container_type; public: explicit niederreiter_base2_lattice(std::size_t dimension) { resize(dimension); } void resize(std::size_t dimension) { typedef boost::dynamic_bitset<> bitset_type; dimension_assert("Niederreiter base 2", dimension, Nb2Table::max_dimension); // Initialize the bit array container_type cj(bit_count * dimension); // Reserve temporary space for lattice computation bitset_type v, pb, tmp; // Compute Niedderreiter base 2 lattice for (std::size_t dim = 0; dim != dimension; ++dim) { const typename Nb2Table::value_type poly = Nb2Table::polynomial(dim); if (poly > (std::numeric_limits<value_type>::max)()) { boost::throw_exception( std::range_error("niederreiter_base2: polynomial value outside the given value type range") ); } const unsigned degree = qrng_detail::msb(poly); // integer log2(poly) const unsigned space_required = degree * ((bit_count / degree) + 1); // ~ degree + bit_count v.resize(degree + bit_count - 1); // For each dimension, we need to calculate powers of an // appropriate irreducible polynomial, see Niederreiter // page 65, just below equation (19). // Copy the appropriate irreducible polynomial into PX, // and its degree into E. Set polynomial B = PX ** 0 = 1. // M is the degree of B. Subsequently B will hold higher // powers of PX. pb.resize(space_required); tmp.resize(space_required); typename bitset_type::size_type kj, pb_degree = 0; pb.reset(); // pb == 0 pb.set(pb_degree); // set the proper bit for the pb_degree value_type j = high_bit_mask_t<bit_count - 1>::high_bit; do { // Now choose a value of Kj as defined in section 3.3. // We must have 0 <= Kj < E*J = M. // The limit condition on Kj does not seem to be very relevant // in this program. kj = pb_degree; // Now multiply B by PX so B becomes PX**J. // In section 2.3, the values of Bi are defined with a minus sign : // don't forget this if you use them later! nb2::modulo2_multiply(poly, pb, tmp); pb_degree += degree; if (pb_degree >= pb.size()) { // Note that it is quite possible for kj to become bigger than // the new computed value of pb_degree. pb_degree = nb2::bitset_log2(pb); } // If U = 0, we need to set B to the next power of PX // and recalculate V. nb2::calculate_v(pb, kj, pb_degree, v); // Niederreiter (page 56, after equation (7), defines two // variables Q and U. We do not need Q explicitly, but we // do need U. // Advance Niederreiter's state variables. for (unsigned u = 0; j && u != degree; ++u, j >>= 1) { // Now C is obtained from V. Niederreiter // obtains A from V (page 65, near the bottom), and then gets // C from A (page 56, equation (7)). However this can be done // in one step. Here CI(J,R) corresponds to // Niederreiter's C(I,J,R), whose values we pack into array // CJ so that CJ(I,R) holds all the values of C(I,J,R) for J from 1 to NBITS. for (unsigned r = 0; r != bit_count; ++r) { value_type& num = cj[dimension * r + dim]; // set the jth bit in num num = (num & ~j) | (-v[r + u] & j); } } } while (j != 0); } bits.swap(cj); } typename container_type::const_iterator iter_at(std::size_t n) const { BOOST_ASSERT(!(n > bits.size())); return bits.begin() + n; } private: container_type bits; }; } // namespace qrng_detail typedef detail::qrng_tables::niederreiter_base2 default_niederreiter_base2_table; /** @endcond */ //!Instantiations of class template niederreiter_base2_engine model a \quasi_random_number_generator. //!The niederreiter_base2_engine uses the algorithm described in //! \blockquote //!Bratley, Fox, Niederreiter, ACM Trans. Model. Comp. Sim. 2, 195 (1992). //! \endblockquote //! //!\attention niederreiter_base2_engine skips trivial zeroes at the start of the sequence. For example, //!the beginning of the 2-dimensional Niederreiter base 2 sequence in @c uniform_01 distribution will look //!like this: //!\code{.cpp} //!0.5, 0.5, //!0.75, 0.25, //!0.25, 0.75, //!0.375, 0.375, //!0.875, 0.875, //!... //!\endcode //! //!In the following documentation @c X denotes the concrete class of the template //!niederreiter_base2_engine returning objects of type @c UIntType, u and v are the values of @c X. //! //!Some member functions may throw exceptions of type std::range_error. This //!happens when the quasi-random domain is exhausted and the generator cannot produce //!any more values. The length of the low discrepancy sequence is given by //! \f$L=Dimension \times (2^{w} - 1)\f$. template<typename UIntType, unsigned w, typename Nb2Table = default_niederreiter_base2_table> class niederreiter_base2_engine : public qrng_detail::gray_coded_qrng< qrng_detail::niederreiter_base2_lattice<UIntType, w, Nb2Table> > { typedef qrng_detail::niederreiter_base2_lattice<UIntType, w, Nb2Table> lattice_t; typedef qrng_detail::gray_coded_qrng<lattice_t> base_t; public: //!Effects: Constructs the default `s`-dimensional Niederreiter base 2 quasi-random number generator. //! //!Throws: bad_alloc, invalid_argument, range_error. explicit niederreiter_base2_engine(std::size_t s) : base_t(s) // initialize lattice here {} #ifdef BOOST_RANDOM_DOXYGEN //=========================Doxygen needs this!============================== typedef UIntType result_type; //!Returns: Tight lower bound on the set of values returned by operator(). //! //!Throws: nothing. static BOOST_CONSTEXPR result_type min BOOST_PREVENT_MACRO_SUBSTITUTION () { return (base_t::min)(); } //!Returns: Tight upper bound on the set of values returned by operator(). //! //!Throws: nothing. static BOOST_CONSTEXPR result_type max BOOST_PREVENT_MACRO_SUBSTITUTION () { return (base_t::max)(); } //!Returns: The dimension of of the quasi-random domain. //! //!Throws: nothing. std::size_t dimension() const { return base_t::dimension(); } //!Effects: Resets the quasi-random number generator state to //!the one given by the default construction. Equivalent to u.seed(0). //! //!\brief Throws: nothing. void seed() { base_t::seed(); } //!Effects: Effectively sets the quasi-random number generator state to the `init`-th //!vector in the `s`-dimensional quasi-random domain, where `s` == X::dimension(). //!\code //!X u, v; //!for(int i = 0; i < N; ++i) //! for( std::size_t j = 0; j < u.dimension(); ++j ) //! u(); //!v.seed(N); //!assert(u() == v()); //!\endcode //! //!\brief Throws: range_error. void seed(UIntType init) { base_t::seed(init); } //!Returns: Returns a successive element of an `s`-dimensional //!(s = X::dimension()) vector at each invocation. When all elements are //!exhausted, X::operator() begins anew with the starting element of a //!subsequent `s`-dimensional vector. //! //!Throws: range_error. result_type operator()() { return base_t::operator()(); } //!Effects: Advances *this state as if `z` consecutive //!X::operator() invocations were executed. //!\code //!X u = v; //!for(int i = 0; i < N; ++i) //! u(); //!v.discard(N); //!assert(u() == v()); //!\endcode //! //!Throws: range_error. void discard(boost::uintmax_t z) { base_t::discard(z); } //!Returns true if the two generators will produce identical sequences of outputs. BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(niederreiter_base2_engine, x, y) { return static_cast<const base_t&>(x) == y; } //!Returns true if the two generators will produce different sequences of outputs. BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(niederreiter_base2_engine) //!Writes the textual representation of the generator to a @c std::ostream. BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, niederreiter_base2_engine, s) { return os << static_cast<const base_t&>(s); } //!Reads the textual representation of the generator from a @c std::istream. BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, niederreiter_base2_engine, s) { return is >> static_cast<base_t&>(s); } #endif // BOOST_RANDOM_DOXYGEN }; /** * @attention This specialization of \niederreiter_base2_engine supports up to 4720 dimensions. * * Binary irreducible polynomials (primes in the ring `GF(2)[X]`, evaluated at `X=2`) were generated * while condition `max(prime)` < 2<sup>16</sup> was satisfied. * * There are exactly 4720 such primes, which yields a Niederreiter base 2 table for 4720 dimensions. * * However, it is possible to provide your own table to \niederreiter_base2_engine should the default one be insufficient. */ typedef niederreiter_base2_engine<boost::uint_least64_t, 64u, default_niederreiter_base2_table> niederreiter_base2; } // namespace random } // namespace boost #endif // BOOST_RANDOM_NIEDERREITER_BASE2_HPP