관리-도구
편집 파일: inversive_congruential.hpp
/* boost random/inversive_congruential.hpp header file * * Copyright Jens Maurer 2000-2001 * Distributed under the Boost Software License, Version 1.0. (See * accompanying file LICENSE_1_0.txt or copy at * http://www.boost.org/LICENSE_1_0.txt) * * See http://www.boost.org for most recent version including documentation. * * $Id$ * * Revision history * 2001-02-18 moved to individual header files */ #ifndef BOOST_RANDOM_INVERSIVE_CONGRUENTIAL_HPP #define BOOST_RANDOM_INVERSIVE_CONGRUENTIAL_HPP #include <iosfwd> #include <stdexcept> #include <boost/assert.hpp> #include <boost/config.hpp> #include <boost/cstdint.hpp> #include <boost/random/detail/config.hpp> #include <boost/random/detail/const_mod.hpp> #include <boost/random/detail/seed.hpp> #include <boost/random/detail/operators.hpp> #include <boost/random/detail/seed_impl.hpp> #include <boost/random/detail/disable_warnings.hpp> namespace boost { namespace random { // Eichenauer and Lehn 1986 /** * Instantiations of class template @c inversive_congruential_engine model a * \pseudo_random_number_generator. It uses the inversive congruential * algorithm (ICG) described in * * @blockquote * "Inversive pseudorandom number generators: concepts, results and links", * Peter Hellekalek, In: "Proceedings of the 1995 Winter Simulation * Conference", C. Alexopoulos, K. Kang, W.R. Lilegdon, and D. Goldsman * (editors), 1995, pp. 255-262. ftp://random.mat.sbg.ac.at/pub/data/wsc95.ps * @endblockquote * * The output sequence is defined by x(n+1) = (a*inv(x(n)) - b) (mod p), * where x(0), a, b, and the prime number p are parameters of the generator. * The expression inv(k) denotes the multiplicative inverse of k in the * field of integer numbers modulo p, with inv(0) := 0. * * The template parameter IntType shall denote a signed integral type large * enough to hold p; a, b, and p are the parameters of the generators. The * template parameter val is the validation value checked by validation. * * @xmlnote * The implementation currently uses the Euclidian Algorithm to compute * the multiplicative inverse. Therefore, the inversive generators are about * 10-20 times slower than the others (see section"performance"). However, * the paper talks of only 3x slowdown, so the Euclidian Algorithm is probably * not optimal for calculating the multiplicative inverse. * @endxmlnote */ template<class IntType, IntType a, IntType b, IntType p> class inversive_congruential_engine { public: typedef IntType result_type; BOOST_STATIC_CONSTANT(bool, has_fixed_range = false); BOOST_STATIC_CONSTANT(result_type, multiplier = a); BOOST_STATIC_CONSTANT(result_type, increment = b); BOOST_STATIC_CONSTANT(result_type, modulus = p); BOOST_STATIC_CONSTANT(IntType, default_seed = 1); static BOOST_CONSTEXPR result_type min BOOST_PREVENT_MACRO_SUBSTITUTION () { return b == 0 ? 1 : 0; } static BOOST_CONSTEXPR result_type max BOOST_PREVENT_MACRO_SUBSTITUTION () { return p-1; } /** * Constructs an @c inversive_congruential_engine, seeding it with * the default seed. */ inversive_congruential_engine() { seed(); } /** * Constructs an @c inversive_congruential_engine, seeding it with @c x0. */ BOOST_RANDOM_DETAIL_ARITHMETIC_CONSTRUCTOR(inversive_congruential_engine, IntType, x0) { seed(x0); } /** * Constructs an @c inversive_congruential_engine, seeding it with values * produced by a call to @c seq.generate(). */ BOOST_RANDOM_DETAIL_SEED_SEQ_CONSTRUCTOR(inversive_congruential_engine, SeedSeq, seq) { seed(seq); } /** * Constructs an @c inversive_congruential_engine, seeds it * with values taken from the itrator range [first, last), * and adjusts first to point to the element after the last one * used. If there are not enough elements, throws @c std::invalid_argument. * * first and last must be input iterators. */ template<class It> inversive_congruential_engine(It& first, It last) { seed(first, last); } /** * Calls seed(default_seed) */ void seed() { seed(default_seed); } /** * If c mod m is zero and x0 mod m is zero, changes the current value of * the generator to 1. Otherwise, changes it to x0 mod m. If c is zero, * distinct seeds in the range [1,m) will leave the generator in distinct * states. If c is not zero, the range is [0,m). */ BOOST_RANDOM_DETAIL_ARITHMETIC_SEED(inversive_congruential_engine, IntType, x0) { // wrap _x if it doesn't fit in the destination if(modulus == 0) { _value = x0; } else { _value = x0 % modulus; } // handle negative seeds if(_value < 0) { _value += modulus; } // adjust to the correct range if(increment == 0 && _value == 0) { _value = 1; } BOOST_ASSERT(_value >= (min)()); BOOST_ASSERT(_value <= (max)()); } /** * Seeds an @c inversive_congruential_engine using values from a SeedSeq. */ BOOST_RANDOM_DETAIL_SEED_SEQ_SEED(inversive_congruential_engine, SeedSeq, seq) { seed(detail::seed_one_int<IntType, modulus>(seq)); } /** * seeds an @c inversive_congruential_engine with values taken * from the itrator range [first, last) and adjusts @c first to * point to the element after the last one used. If there are * not enough elements, throws @c std::invalid_argument. * * @c first and @c last must be input iterators. */ template<class It> void seed(It& first, It last) { seed(detail::get_one_int<IntType, modulus>(first, last)); } /** Returns the next output of the generator. */ IntType operator()() { typedef const_mod<IntType, p> do_mod; _value = do_mod::mult_add(a, do_mod::invert(_value), b); return _value; } /** Fills a range with random values */ template<class Iter> void generate(Iter first, Iter last) { detail::generate_from_int(*this, first, last); } /** Advances the state of the generator by @c z. */ void discard(boost::uintmax_t z) { for(boost::uintmax_t j = 0; j < z; ++j) { (*this)(); } } /** * Writes the textual representation of the generator to a @c std::ostream. */ BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, inversive_congruential_engine, x) { os << x._value; return os; } /** * Reads the textual representation of the generator from a @c std::istream. */ BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, inversive_congruential_engine, x) { is >> x._value; return is; } /** * Returns true if the two generators will produce identical * sequences of outputs. */ BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(inversive_congruential_engine, x, y) { return x._value == y._value; } /** * Returns true if the two generators will produce different * sequences of outputs. */ BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(inversive_congruential_engine) private: IntType _value; }; #ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION // A definition is required even for integral static constants template<class IntType, IntType a, IntType b, IntType p> const bool inversive_congruential_engine<IntType, a, b, p>::has_fixed_range; template<class IntType, IntType a, IntType b, IntType p> const typename inversive_congruential_engine<IntType, a, b, p>::result_type inversive_congruential_engine<IntType, a, b, p>::multiplier; template<class IntType, IntType a, IntType b, IntType p> const typename inversive_congruential_engine<IntType, a, b, p>::result_type inversive_congruential_engine<IntType, a, b, p>::increment; template<class IntType, IntType a, IntType b, IntType p> const typename inversive_congruential_engine<IntType, a, b, p>::result_type inversive_congruential_engine<IntType, a, b, p>::modulus; template<class IntType, IntType a, IntType b, IntType p> const typename inversive_congruential_engine<IntType, a, b, p>::result_type inversive_congruential_engine<IntType, a, b, p>::default_seed; #endif /// \cond show_deprecated // provided for backwards compatibility template<class IntType, IntType a, IntType b, IntType p, IntType val = 0> class inversive_congruential : public inversive_congruential_engine<IntType, a, b, p> { typedef inversive_congruential_engine<IntType, a, b, p> base_type; public: inversive_congruential(IntType x0 = 1) : base_type(x0) {} template<class It> inversive_congruential(It& first, It last) : base_type(first, last) {} }; /// \endcond /** * The specialization hellekalek1995 was suggested in * * @blockquote * "Inversive pseudorandom number generators: concepts, results and links", * Peter Hellekalek, In: "Proceedings of the 1995 Winter Simulation * Conference", C. Alexopoulos, K. Kang, W.R. Lilegdon, and D. Goldsman * (editors), 1995, pp. 255-262. ftp://random.mat.sbg.ac.at/pub/data/wsc95.ps * @endblockquote */ typedef inversive_congruential_engine<uint32_t, 9102, 2147483647-36884165, 2147483647> hellekalek1995; } // namespace random using random::hellekalek1995; } // namespace boost #include <boost/random/detail/enable_warnings.hpp> #endif // BOOST_RANDOM_INVERSIVE_CONGRUENTIAL_HPP