관리-도구
편집 파일: laguerre.cpython-311.pyc
� �܋f�� � � � d Z ddlZddlmZ ddlmZ ddlm Z ddlmZ g d�Z e j Zd� Zd � Z ej ddg� � Z ej dg� � Z ej dg� � Z ej dd g� � Zd� Zd� Zd � Zd� Zd� Zd� Zd� Zd'd�Zd(d�Zdg dddfd�Z d)d�Z!d� Z"d� Z#d� Z$d� Z%d� Z&d� Z'd� Z(d*d �Z)d!� Z*d"� Z+d#� Z,d$� Z- G d%� d&e� � Z.dS )+a� ================================================== Laguerre Series (:mod:`numpy.polynomial.laguerre`) ================================================== This module provides a number of objects (mostly functions) useful for dealing with Laguerre series, including a `Laguerre` class that encapsulates the usual arithmetic operations. (General information on how this module represents and works with such polynomials is in the docstring for its "parent" sub-package, `numpy.polynomial`). Classes ------- .. autosummary:: :toctree: generated/ Laguerre Constants --------- .. autosummary:: :toctree: generated/ lagdomain lagzero lagone lagx Arithmetic ---------- .. autosummary:: :toctree: generated/ lagadd lagsub lagmulx lagmul lagdiv lagpow lagval lagval2d lagval3d laggrid2d laggrid3d Calculus -------- .. autosummary:: :toctree: generated/ lagder lagint Misc Functions -------------- .. autosummary:: :toctree: generated/ lagfromroots lagroots lagvander lagvander2d lagvander3d laggauss lagweight lagcompanion lagfit lagtrim lagline lag2poly poly2lag See also -------- `numpy.polynomial` � N)�normalize_axis_index� )� polyutils)�ABCPolyBase)�lagzero�lagone�lagx� lagdomain�lagline�lagadd�lagsub�lagmulx�lagmul�lagdiv�lagpow�lagval�lagder�lagint�lag2poly�poly2lag�lagfromroots� lagvander�lagfit�lagtrim�lagroots�Laguerre�lagval2d�lagval3d� laggrid2d� laggrid3d�lagvander2d�lagvander3d�lagcompanion�laggauss� lagweightc � � t j | g� � \ } d}| ddd� D ]}t t |� � |� � }� |S )a� poly2lag(pol) Convert a polynomial to a Laguerre series. Convert an array representing the coefficients of a polynomial (relative to the "standard" basis) ordered from lowest degree to highest, to an array of the coefficients of the equivalent Laguerre series, ordered from lowest to highest degree. Parameters ---------- pol : array_like 1-D array containing the polynomial coefficients Returns ------- c : ndarray 1-D array containing the coefficients of the equivalent Laguerre series. See Also -------- lag2poly Notes ----- The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance. Examples -------- >>> from numpy.polynomial.laguerre import poly2lag >>> poly2lag(np.arange(4)) array([ 23., -63., 58., -18.]) r N���)�pu� as_seriesr r )�pol�res�ps �P/opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/polynomial/laguerre.pyr r ` sR � �L �L�#����E�S� �C� ���2��Y� &� &���W�S�\�\�1�%�%����J� c � � ddl m}m}m} t j | g� � \ } t | � � }|dk r| S | d }| d }t |dz dd� � D ]M}|} || |dz ||dz z |z � � } || |d|z dz |z ||� � � � |z � � }�N || || ||� � � � � � S )a� Convert a Laguerre series to a polynomial. Convert an array representing the coefficients of a Laguerre series, ordered from lowest degree to highest, to an array of the coefficients of the equivalent polynomial (relative to the "standard" basis) ordered from lowest to highest degree. Parameters ---------- c : array_like 1-D array containing the Laguerre series coefficients, ordered from lowest order term to highest. Returns ------- pol : ndarray 1-D array containing the coefficients of the equivalent polynomial (relative to the "standard" basis) ordered from lowest order term to highest. See Also -------- poly2lag Notes ----- The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance. Examples -------- >>> from numpy.polynomial.laguerre import lag2poly >>> lag2poly([ 23., -63., 58., -18.]) array([0., 1., 2., 3.]) r )�polyadd�polysub�polymulx���r'