관리-도구
편집 파일: hermite_e.cpython-311.pyc
� �܋f�� � � � d Z ddlZddlmZ ddlmZ ddlm Z ddlmZ g d�Z e j Zd� Zd � Z ej d dg� � Z ej dg� � Z ej dg� � Z ej ddg� � Zd� Zd� Zd � Zd� Zd� Zd� Zd� Zd(d�Zd)d�Zdg dddfd�Z d*d�Z!d� Z"d� Z#d� Z$d� Z%d� Z&d� Z'd� Z(d+d �Z)d!� Z*d"� Z+d#� Z,d$� Z-d%� Z. G d&� d'e� � Z/dS ),a. =================================================================== HermiteE Series, "Probabilists" (:mod:`numpy.polynomial.hermite_e`) =================================================================== This module provides a number of objects (mostly functions) useful for dealing with Hermite_e series, including a `HermiteE` class that encapsulates the usual arithmetic operations. (General information on how this module represents and works with such polynomials is in the docstring for its "parent" sub-package, `numpy.polynomial`). Classes ------- .. autosummary:: :toctree: generated/ HermiteE Constants --------- .. autosummary:: :toctree: generated/ hermedomain hermezero hermeone hermex Arithmetic ---------- .. autosummary:: :toctree: generated/ hermeadd hermesub hermemulx hermemul hermediv hermepow hermeval hermeval2d hermeval3d hermegrid2d hermegrid3d Calculus -------- .. autosummary:: :toctree: generated/ hermeder hermeint Misc Functions -------------- .. autosummary:: :toctree: generated/ hermefromroots hermeroots hermevander hermevander2d hermevander3d hermegauss hermeweight hermecompanion hermefit hermetrim hermeline herme2poly poly2herme See also -------- `numpy.polynomial` � N)�normalize_axis_index� )� polyutils)�ABCPolyBase)� hermezero�hermeone�hermex�hermedomain� hermeline�hermeadd�hermesub� hermemulx�hermemul�hermediv�hermepow�hermeval�hermeder�hermeint� herme2poly� poly2herme�hermefromroots�hermevander�hermefit� hermetrim� hermeroots�HermiteE� hermeval2d� hermeval3d�hermegrid2d�hermegrid3d� hermevander2d� hermevander3d�hermecompanion� hermegauss�hermeweightc �� � t j | g� � \ } t | � � dz }d}t |dd� � D ]%}t t |� � | | � � }�&|S )a� poly2herme(pol) Convert a polynomial to a Hermite series. Convert an array representing the coefficients of a polynomial (relative to the "standard" basis) ordered from lowest degree to highest, to an array of the coefficients of the equivalent Hermite series, ordered from lowest to highest degree. Parameters ---------- pol : array_like 1-D array containing the polynomial coefficients Returns ------- c : ndarray 1-D array containing the coefficients of the equivalent Hermite series. See Also -------- herme2poly Notes ----- The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance. Examples -------- >>> from numpy.polynomial.hermite_e import poly2herme >>> poly2herme(np.arange(4)) array([ 2., 10., 2., 3.]) r r ���)�pu� as_series�len�ranger r )�pol�deg�res�is �Q/opt/cloudlinux/venv/lib64/python3.11/site-packages/numpy/polynomial/hermite_e.pyr r a sg � �L �L�#����E�S� �c�(�(�Q�,�C� �C� �3��B� � � /� /���y��~�~�s�1�v�.�.����J� c �^ � ddl m}m}m} t j | g� � \ } t | � � }|dk r| S |dk r| S | d }| d }t |dz dd� � D ]4}|} || |dz ||dz z � � } || ||� � � � }�5 || ||� � � � S )a Convert a Hermite series to a polynomial. Convert an array representing the coefficients of a Hermite series, ordered from lowest degree to highest, to an array of the coefficients of the equivalent polynomial (relative to the "standard" basis) ordered from lowest to highest degree. Parameters ---------- c : array_like 1-D array containing the Hermite series coefficients, ordered from lowest order term to highest. Returns ------- pol : ndarray 1-D array containing the coefficients of the equivalent polynomial (relative to the "standard" basis) ordered from lowest order term to highest. See Also -------- poly2herme Notes ----- The easy way to do conversions between polynomial basis sets is to use the convert method of a class instance. Examples -------- >>> from numpy.polynomial.hermite_e import herme2poly >>> herme2poly([ 2., 10., 2., 3.]) array([0., 1., 2., 3.]) r )�polyadd�polysub�polymulx� ���r'