관리-도구
편집 파일: chebyshev.cpython-37.pyc
B ��FdN� � ! @ s d Z ddlmZmZmZ ddlZddlZddlm Z ddlmZ ddl mZ ddlmZ dd d ddd ddddddddddddddddddd d!d"d#d$d%d&d'd(g!ZejZd)d*� Zd+d,� Zd-d.� Zd/d0� Zd1d2� Zd3d4� Zd5d� Zd6d� Ze�d7dg�Ze�dg�Ze�dg�Z e�ddg�Z!d8d� Z"d9d� Z#d:d � Z$d;d� Z%d<d� Z&d=d� Z'd>d� Z(dUd@d�Z)dVdAd�Z*dg dddfdBd�Z+dWdDd�Z,dEd � Z-dFd"� Z.dGd!� Z/dHd#� Z0dId� Z1dJd$� Z2dKd%� Z3dXdMd�Z4dNd&� Z5dOd� Z6dPd'� Z7dQd(� Z8dRd� Z9dSd� Z:G dTd� de�Z;dS )Ya� Objects for dealing with Chebyshev series. This module provides a number of objects (mostly functions) useful for dealing with Chebyshev series, including a `Chebyshev` class that encapsulates the usual arithmetic operations. (General information on how this module represents and works with such polynomials is in the docstring for its "parent" sub-package, `numpy.polynomial`). Constants --------- - `chebdomain` -- Chebyshev series default domain, [-1,1]. - `chebzero` -- (Coefficients of the) Chebyshev series that evaluates identically to 0. - `chebone` -- (Coefficients of the) Chebyshev series that evaluates identically to 1. - `chebx` -- (Coefficients of the) Chebyshev series for the identity map, ``f(x) = x``. Arithmetic ---------- - `chebadd` -- add two Chebyshev series. - `chebsub` -- subtract one Chebyshev series from another. - `chebmul` -- multiply two Chebyshev series. - `chebdiv` -- divide one Chebyshev series by another. - `chebpow` -- raise a Chebyshev series to an positive integer power - `chebval` -- evaluate a Chebyshev series at given points. - `chebval2d` -- evaluate a 2D Chebyshev series at given points. - `chebval3d` -- evaluate a 3D Chebyshev series at given points. - `chebgrid2d` -- evaluate a 2D Chebyshev series on a Cartesian product. - `chebgrid3d` -- evaluate a 3D Chebyshev series on a Cartesian product. Calculus -------- - `chebder` -- differentiate a Chebyshev series. - `chebint` -- integrate a Chebyshev series. Misc Functions -------------- - `chebfromroots` -- create a Chebyshev series with specified roots. - `chebroots` -- find the roots of a Chebyshev series. - `chebvander` -- Vandermonde-like matrix for Chebyshev polynomials. - `chebvander2d` -- Vandermonde-like matrix for 2D power series. - `chebvander3d` -- Vandermonde-like matrix for 3D power series. - `chebgauss` -- Gauss-Chebyshev quadrature, points and weights. - `chebweight` -- Chebyshev weight function. - `chebcompanion` -- symmetrized companion matrix in Chebyshev form. - `chebfit` -- least-squares fit returning a Chebyshev series. - `chebpts1` -- Chebyshev points of the first kind. - `chebpts2` -- Chebyshev points of the second kind. - `chebtrim` -- trim leading coefficients from a Chebyshev series. - `chebline` -- Chebyshev series representing given straight line. - `cheb2poly` -- convert a Chebyshev series to a polynomial. - `poly2cheb` -- convert a polynomial to a Chebyshev series. Classes ------- - `Chebyshev` -- A Chebyshev series class. See also -------- `numpy.polynomial` Notes ----- The implementations of multiplication, division, integration, and differentiation use the algebraic identities [1]_: .. math :: T_n(x) = \frac{z^n + z^{-n}}{2} \\ z\frac{dx}{dz} = \frac{z - z^{-1}}{2}. where .. math :: x = \frac{z + z^{-1}}{2}. These identities allow a Chebyshev series to be expressed as a finite, symmetric Laurent series. In this module, this sort of Laurent series is referred to as a "z-series." References ---------- .. [1] A. T. Benjamin, et al., "Combinatorial Trigonometry with Chebyshev Polynomials," *Journal of Statistical Planning and Inference 14*, 2008 (preprint: http://www.math.hmc.edu/~benjamin/papers/CombTrig.pdf, pg. 4) � )�division�absolute_import�print_functionN)�normalize_axis_index� )� polyutils)�ABCPolyBase�chebzero�chebone�chebx� chebdomain�chebline�chebadd�chebsub�chebmulx�chebmul�chebdiv�chebpow�chebval�chebder�chebint� cheb2poly� poly2cheb� chebfromroots� chebvander�chebfit�chebtrim� chebroots�chebpts1�chebpts2� Chebyshev� chebval2d� chebval3d� chebgrid2d� chebgrid3d�chebvander2d�chebvander3d� chebcompanion� chebgauss� chebweightc C sD | j }tjd| d | jd�}| d ||d d�<